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Once a factor analyst has determined a factor space for a complex of

variables he usually desires a basis for interpreting the factor space.

Traditionally the basis for interpreting a factor space has bt,en

relative to either orthogonal (nac:)rrelate) factor or ol)liyie

(correlated) factor axes. That is to sny, the "loadinp,d'of the initial

factor loading matrix are transformed through the use of either an

orthogonal or oblique transformation procedure.

Any oblique transformation solution encompasses three matrices. The

general names given to these three matrices are the pattern matrix, the

structure matrix and the factor intercorrelation matrix. The entries of

a structure matrix represent the perpendicular projection,i of the variable

vectors onto the oblique factor axes and with an approoriate scaliul are by

rows the correlations of'the variables with the facto::s. nu entries of a

pattern matrix represent the parallel projecticins of the vari..iblc vecLois

onto the oblique factor axes and are by rows the statolirdi:d

weights of a regression equation describing each of tee orved vnriables

in terms of the correlated factors. The entries of the factor

intercorrelation matrix are just the corrolctions bat:Atari the factors.

Although most iapers on oblique transformations do not Jeal specifically

with orthogonal factor axes, one may regard an orthogonal transformation

solution within the more general framework of obliquc .;old.? ions. In ti

general oblique framework the orthogonal trinuformtioa so]uf.ioa be

thought of as a special solution in which. actor Lvtkr,' rrAztion

matrix is an identity matrix. When the factors arcs uncorrulatcd the

parallel projections and perpendicular projections of the v:Iriable vectors

are identical, thereby resulting in a structure matrix that is identical

to a pattern matrix.
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There have been in the past two schools of thought pertaining to

the type of interpretation that should be made for an oblique solution.

One mode of thought was based upon the work of Louis Thurstone (1947)

while the other was based upon the work of K.irl Holzinger (Kolzil'er

and Harman, 1941). The Thurstone-Holzinger difference3 stem,

philosophically from the idea of invariance and geometrically from the

definitions of factor axes used in obtaining the final solution

matrices, which implicitly determine whether it in the pattern or

structure matrix that should be used for the final interpretation. The

Thurstone (1947) school of thought bases the final interpretation of

the oblique transformation on a structure matrix while the Holzinger

school (Holzinger and Harman, 1941) uses a pattern matrix for the final

interpretation.

Holzinger defined his solutions using primary vectors, those

vectors formed by the intersection of hyperplanes. Thus, Holzinger's

solution matrices for interpretation were the primary pattern and the

primary intercorrelation matrices. The loadinr:3 of the prilry pattern

matrix are defined geometrically as the parallel projectiont; of the

variable vectors onto the unit length primary vectors.

Thurstone (1947) defined his solutions using reference vectors,

those vectors defined as normals to hyperplanes. Thun;Lone was

concerned with the perpendicular projections of the , ::ruble vectors

onto the unit length reference vectors. Although ThursLonc ;:as

interested in the reference structure matrix, it is interesting to note

that he usually reported the primary intercorrelation matrix along with

the reference intercorrelation matrix.

3
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Typically a solution matrix is desired which will have scientific

meaning and interpretability. Scientific meaning and interpretability

are facilitated when some of the entries of the solution matrix are very

high and the remaining entries are zero or near zero. A zero entry in a

solution matrix may be thought of as a vanishing projection, thus the

objective in obtaining a solution facilitating scientific inter:etntion

is one of maximizing the number of vanishing projections. (This concept

is frequently referred to as "Ample structure", however this term is

somewhat misleading and will not be used in this paper.) Either the

number of vanishing perpendicular projections or the number of vanishing

parallel projections must be maximized, inab,auch as both types of

projections cannot generally be maximized within the context of a single

(either primary or reference) system. That is to ::ay, thn zero

"loadings" in the pattern and the structure matrix cannot both be

maximized within a single system. Th.. mrttrix in w:lic:1 the vanishing

projections are to be maximized is dependent upon the interpretation

that one wishes to make from the final solution. If the int,:rpretation

is to be made in terms of the correlations between the variables and

the factors then the vanishing perpendicular projections of the

variable vectors onto the unit reference vectors, the near-zero

entries of the reference structure matrix, should be maximized. if one

wishes to treat the observed variables as dependent varia)lus and the

factors as independent variables, then the vanishiny, prallel

projections of the variable vectors onto the unit primary vectors, the

near-zero entries of the primary pattern matrix, should be maximized.

In the past, with several exceptions, most attempts to develop

analytic oblique procedures have followed the Thurstonian mode of

4
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thought, maximizing the vanishing perpendicular projections of the

variable vectors onto the unit reference vectors. The reason for this

is not particularly clear, but either the ThurstonLan annroach is 1,ss

complex than the HoLzinger approach or fcwt.or aaalysts find the

reference structure matrix an easier matrix to interpret. In keLpin-;

with tradition this paper will follow the Thurstonian model, 1wwvvvr it

should bcco.: .rent to the reader, us a r-fault of reading this na..)er,

that the c. model in this paper was somewhat arbitrary as both

types of solur. ,. may be computed with ease using the uuw transformation

procedure devvloyA and presented herein.

The objet,t1.-u of this paper is to acquaint the reader with certain

aspects of the methodology, properties and nature of the general

obliquimax transforlaation (Hofmann, 1971). vor pedagogical and illustrative

purposes one of Thurstone's methods of determining oblique traasforl:,ations

is presented and then modified to produce a skplified ver.:i.,In of the

obliquimax which is referred to as the simplified obliquimax.

The simplified obliquimax is unique in the sense that it is a

semi-subjective transformation procedure that depends neither en ..11 oblique

analytic simple'structure criterion nor graphical techniques to

determine the oblique transformation solution. It provides a

conceptually simple yet reliable oblique transformation prov,dure for

most sets of data. However, jt is not it:%,:;.:.: to bP. pni,:tIoll

working model. It is the general obliquimax that is tl.e pr 't:!.ni

model.

This paper is composed of three sections. In the first section,

(Section I), Thurstone's (1947) method of determining subjective c,blique

transformations is discussed within the context of two-dimensional

.

I
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sections. Although nothing in the first section is new, it defines and

describes geometrically the matrices and terminology traditionally used

in the Thurstonian type oblique transformations. The first section alo

establishes an algebraic model for determining oubjectivo oblique

transformation solutions through the use of an iterative v.ethod.

In the second section, (Section II), the general obliquimax is

briefly discussed with respect to the matrix equations defining an

oblique solution. Special emphasis is placed on the matrices of

direction numbers and solution matrices expressed within the metric of

the original factor solution. Several important similarities between

the Thurstone and Holzinger solutions are noted. This section does not

provide a detailed discussion of the general obliquimax inasmuch as it

is included only to provide a basic theoretical rationale for the

development of the simplified obliquimax in the third section of the

paper.

In the third and final section, (Section III), of this paper the

simplified obliquimax is presented. Thurstone's initial matrix of

direction numbers is defined as a symmetric matrix a prz:c:,i without the

use of planar plots. All subsequent iterative stage solution matrices

are expressed within the metric of the original factor solution and

defined in terms of an orthogonal transformation of thu original

factor solution and exponential powers of the initial .-ilotric matrix

of direction numbers. Conjectures are made about certain new aspects

of the geometry of oblique solutions within the framework of the

direction numbers of the simplified obliquimax.

In Sections I and III a set of illustrative data is used to

'clarify the discussion. Iterative solutions for this data set are

6
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determined by Thurstone's method in Section I and by the simplified

obliquimax in Section III.

Aside from acquainting the reader with the general obliquimax, this

paper should clarify and exteud certain Llb.wratieal at;rects obH,4ue

solutions in general.

Section I
Thurstone's Method Of Determining Oblique Transformation

Solutions By Two Dimensional Sections:

As previously mentioned Thurstone sought to define an oblique

solution with respect to perpendicular projections onto the reference

vectors, thus his solution matrix of interest was the reference

structure matrix. Thurstone (1947) presented several methods of

oblique transformation: plotting the normalized variable vectors onto a

hyper-sphere, two dimensional sections and by three dimensional sections.

His first method was quite subjective while his other two methods were

primarily analytic and algebraically the principle involved in both

methods is the same. In this section his algebraic principles will be

used and discussed within the context of two-dimensional sections.

(Although there are numerous modifications and rewordings this section

is taken directly from Thurstone (1947, p. 194-224). Reference to

Thurstone (1947) is implicit throughout this section.)

Assume some factor loading matrix, F, defining the perpendicular

projections of n variable vectors onto r mutually orthogonal factor

axes. The r axes are arbitrarily orthogonal axes as determined by the

initial factoring method. For illustrative purposes Thurstone's

technique will be discussed within the framework of his classic box

problem (Thurstone, 1947, pp. 140-144). The centroid solution for the
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box problem is reported in Table 1. For this particular set of data

(ri = 20) and (r = 3) .

Table 1

Centroid Solution* of Box Problc.m
Matrix F

A
o Co

Al B1
C1
C

1 .659 -.736 .138
2 .725 .180 -.656
3 .665 .537 .500
4 .869 -.209 -.443
5 .834 .182 .508
6 .836 .519 .152
7 .856 -.452 -.269
8 .848 -.426 .320
9 .861 .416 -.299

10 .880 -.341 -.354
11 .889 -.147 .436
12 .875 .485 -.093
13 .667 -.725 .109
14 .717 .246 -.619
15 .634 .501 .522
16 .936 .257 .165
17 .966 -.239 -.033
18 .625 -.720 .166
19 .702 .112 -.650
20 .664 .536 .483

*Thurstone, 1947, p. 194.

The r axes may be denoted as Ao, Bo, and Co. These arbitrary axes

are regarded as fixed in position. The problem is to select by u

successive approximations the unit reference vectors,
, and CU

5

such that the number of variable vectors with zero perpendicular

projections onto these unit reference vectors is a maximum.

In starting the transformation procedure the r unit reference

vectors are assumed to be mutually orthogonal and collinear with the r
arbitrary orthogonal axes. That is to say, Al is orthogonal to B/ and

8
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C1 and it is collinear with Ao. This may be observed in Figures 1, 2 and

3 which represent the planar plottings of the variable points with

respect to. the initial factor axes as reported in Table 1 (Figure 1 being

the points as defined by the first two columns of Tablu 1). Not that

A
0 and Al are the same axis.

Figure 1

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
A and B1, Projected Onto Plane A.P.
1 1, A.P.
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The locations of the reference vectors may be defined with respoet

to the fixed orthogonal frame through the use of the matrix of

direction cosines V. The subscript of refers to t! givf,n

positions of the reference vectors (the iterative stnge). 1:11.n1 v is

unity the reference vectors are collinear with the fixed orthogonal

frame and V1 is an identity matrix. The columns of V1 give tile

9



airection cosines of the initial locations (1) of the unit reference

vectors with respect to the fixed orthogonal frame.* For any matrix of

direction cosines, Vu, the entry vii refers to the cosine of the angle

of inclination between the unit reference vector j and the original

fixed axis i.

The points in Figure 1 show the configuration of variable vector

termini as they would appear when projected orthogonally onto the plane

of A1B1. If vector Al is transformed in the plane A
1
B
1
to the position

of lq, it will determine a plane (of hyperplane if r > 3) which will

intersect the plane A1B1 in the line which is marked B4-primary. The

vectors associated with 1, 13 and 18 will have near-zero projections

(vanishing projections) on the vector A. It is important to note that

the 132-primary passes through the group of points 1, 13 and 18.

Similarly the given position of B/ can be transformed in the A1B1 plane

to Bk and its associated plane will intersect the plane A7B1 in the

line marked A2-primary. The A2-primary passes through the group of

points 6, 9 and 12 and their variable vectors have vanishing projections

on B.

In transforming Al and B1 to the positions Ak and B4 respectively
,,

new positions have been estimated graphically for the reference vectors

A and B such that the number of variable vectors having vanishing

projections has increased. It is important to note here that Ai and B
1

are in part bases and altitudes of right triangles whose hypotenuses

are A'
22 2

B1
2 2 2 2
Ai-primary and B2- primary. The vectors A'

2

BA, AL-primary
L., 6

*The initial factor loading matrix F is assumed to represent the
first iterative stage of Thurstone's solution. Technically F' should be
subscripted as F1, however for convenience the subscript 1 is omitted.

10
-f,

9
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and i3- primary are not of unit length. The prime is used to signify that

AZ B' are "long reference vectors" and that A1,-primary and B'-primary
2 2 14 2

are "long primary vectors".

The geometric discussion in this section is not quite the same as

that presented by Thurstone. It is hoped that by including the long

primary vectors as well as the long reference vectors some of the

geometric similarities between the Thurstone and Polzinger solutions

will become evident. Technically a reference vector is orthogonal to a

hyperplane of (r - 1) dimensions. In any r-dimensional space there are

r hyperplanes of (r - 1) dimensions, and therefore r reference vectors.

The intersection of (r 1) hyperplanes defines a primary vector,

therefore in any r-dimensionai space there are r primary vectors. The

vectors drawn orthogonal to a hyperplane will necessarily be orthogonal

to any vectors contained within the hyperplane, thereby implying that

each primary vector must be orthogonal to (r - 1) reference vectors.

Therefore each primary vector is correlated with only one reference

vector. Orthogonal to the one hyperplane not containing the primary

vector is that reference vector. Within the context of this paper each

reference vector is referred to by a subscripted Roman letter. The

Roman letter may be thought of as representing the hyperplane to which

the reference vector is orthogonal. Each long primary vector is

referred to by a subscripted Roman letter. The Roman letter associated

with the long primary vector may be thought of as representing the

hyperplane which does not contain the primary vector. Thus for the

illustrative example long primary AZ is orthogonal to all long reference

vectors with the exception of long reference vector A. This discussion
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may be generalized to any number of dimensions* and will be presented

algebraically in Sections II and III. At this point we only wish to .

call the reader's attention to the long primaries in the plotted figures

and to note that they are the Holzinger (Holzinger and Harman, 1941)

long primaries.

The coordinates of the termini of Ah, B, A-primary and In-primary
C4 -J .4

can be defined with respect to the fixed orthogonal axes A 7.2 and
0' "o

or with respect to Al, B1 and Cl. Only the coordinates of the long

reference vectors will be discussed in this section. The termini of the

long reference vectors iq and B2 are linear combinations of Al and B1.

Specifically:.

AZ = 1.00A1 + .90B1;

= .50A1 - 1.00B1.

The coordinates of the terminus of q with respect to Al and 21 are

(1.00, .90) and the coordinates of BL are (.50, -1.00). The use of Ao

and A
I
may be somewhat perplexing to the factor analyst unfamiliar with

Thurstone's methodology. For subsequent iterations the role of Ao as

opposed to the role of the previous position of the reference vector,

Au-2
., which is All for the first iterative stage, will become much clearer.

In Figure 2 the first and third columns of F have been plotted.

The vector C
1
has been transformed to C' such that passes

through the group of points 8, 11 and 18. The variable vectors

associated with these points will have vanishin3 projoctionJ on the long

reference vector C.C'
2

The coordinates of the teminus of C" with respect

to AI and C1 are (.40, =.1.00).

C'
2
= .40A

1
- 1.00C

*When r < 4 the hyperplanes become planes.



Figure 2

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
Al and C1, Projected Onto Plane A
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Note that Al is not transformed in the A1C1 plane. The axis Al in the

A1C1 plane represents the projection of long reference vector q onto

the plane.

In Figure 3 the second and third columns of F have been plotted.

In the B
1
C
1
plane the axes Al and B

1
are not transformed, thus, in this

plane B
1
becomes long. reference vector B2 and C

I
becomes long reference

vector C.CI2 The axes B
1
and C1 represent the projections of long

reference vectors
'

B'
2

and C'
2

respectively, onto the %I"
1

plane.
-1'

Although Thurstone has described the transformation process in

two-dimensional sections the long reference vectors are theoretically

linear combinations of all three of the initial reference vectors. They

are also a linear combination of all three of the original axes.

L3
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Figure 3

Planar Plots of Variable Vector Termini.
With Respect to Unit Reference Vectors
B
1

and C1, Projected Onto Plane I,
/
C
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The equations for AL, BL and CL are correctly expressed as:

AZ = 1.00A1 + .90B1 + 0.0 C1;

8'
2

= .50A
1
- 1.00B

1
+ 0.0 C

1 '

CZ = .40A1 + 0.0 B1 - 1.0001.

(Thurstone, 1947, pp. 197-198)

The coordinates of the termini of the new long reference vectors.

(2) with respect to the previous unit length reference vectors (1) are

referred to as the direction numbers of the reference vectors with

respect to the previous reference vectors. The matrix of such direction

numbers will be referred to as S
17:1,1

, where the subscript u refers to the

reference vectors of the present iterative stage and the subscript m

refers to the previous iterative stage On = u - 1). The matrix of such
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direction numbers for the second iterative stage of the illustrative

example is reported in Table 2.

Table 2

Direction Numbers of Second Iterative Stage
Reference VIctors With Rcspect To Previous
Iterative Reference Vectors* - Matrix C

A2
2 2

Al 1.000 0.500 0.400

B1 0.900 -1.000 0.000

Cl 0.000 0.000 -1.000

*It is assumed that F represents the
first iterative stage. Thurstone,
1947,p. 198

The entries of Smu by column are the coordinates of the reference

vectors with respect to the reference vectors of the previous stage.

A second matrix of direction numbers is used by Thurstone. The

second matrix, Lu, represents by columns the coordinates of the termini

of the reference vectors of the u-th iterative stage with respect to the

axes of the fixed orthogonal frame. The matrix Lu is the product of the

previous matrix of direction cosines, V
m'

post-multiplied by the present

matrix of direction numbers, Smu, of the reference vectors with respect

to the m-th set of reference vectors.

L = V Su m mu

For the second iterative stage V
1

is an identity matrix therefore

L
2
is identical to 512' however this identity will not hold for

subsequent iterative stages.

15
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As previously noted the primes on the new reference vectors

distinguish the long reference vectors from unit length reference

vectors. The length of the long referenc2 vectors can he determined

through an r-dimensional extension of the Pythagorean theorem: the ,,.;um

of the squared lengths of the legs of a right triangle is equal to the

squared length of the hypotenuse. lathin the present framework the

length of a long reference vector is determined with respect to the

fixed orthogonal frame. Each coordinate of the terminus of a reference

vector is analogous to the length of one of the lags of a right triangle

whose hypotenuse is the long reference vector. The direction numbers

of interest for determining the lengths of the long reference vectors

are the column entries of Lu. The squared length of long reference

vector Af
2

is just the sum of the squared entries of the first column of

L
2

(For this particular iterative stage L2 = S12 and the column sums of

squares may be computed directly from S12, Table 2.).

Let the non-zero entries of the positive definite diagonal matrix

Du
2

represent the squared lengths of the long reference vectors determined

,2
by the u-th iteration. The equation for computing du is:

Du
2

= diagonal (bIlLu). [2]

For the u-th iterative stage the value represents the length of

the i-th long reference vector. For the illustrative example the

diagonal entries of D2 are reported in Table 3. Post-multiplying L,, by

D
-1

will rescale the metric of the direction numbers such that the

column sums of squares will be unity for the matrix product L.:J:1 .

Within a trigonometric framework the resealing of the columns of Lu is

tantamount to dividing the length of each leg of a right triangle by its

.hypotenuse, thereby converting the direction numbers to direction cosines.
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Table 3

Lengths of the Long Reference Vectors Determined
in the Second Iterative Stage* - Matrix D2

A
2

B On

1.345 0.000 0.000

0.000 1.118 0.000

0.000 0.000 0.929

*Thurstone, 1947, p. 198

The lengths of the long reference vectors have not been changed. The

metric of the long reference vectors has been changed. In changing the

metric of the coordinates of the termini of the reference vectors each

coordinate becomes the cosine of the angle of inclination between a

particular reference vector and a fixed axis. The resealing of Lu by

-
D
u
1
normalizes the columns of Lu to form the matrix of direction cosines

V . The equation for computing the direction cosines associated with

the unit reference vectors of the u-th iteration is:

V = L -1
74 u

D
u

Table 4

Direction Cosines of Second Iterative
Stage* - Matrix V2

A
2

B
2

C
2

A
o .743 .447 .371

Bo .669 -.894 .000

Co .000 .000 -.928

*Thurstone, 1947, p. 198

17
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To determine the perpendicular projections of the n variable vectors

onto the r unit length reference vectors as estimated by the u-th

Iterative 'stage it is necessary to post-multiply I" by the matrix V:.

Postmultiplying F by Vu (Equation 4) will transform the initial reference

vectors into the positions of the u-th estimate of the reference vectors

and the resulting matrix, Fu, will be the reference structure matrix for

the u-th iterative stage. For the illustrative example V2 is reported

in Table 4 and F
2

is reported in Table 5.

4F = FV S Du m mu u
- 1Fu = FLuDu

Fu .= FVu

Table 5

Reference Structure Matrix as Determined By
the Second Iterative Stage* - Matrix F2

C

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18
19

20

-.003 .953 .116

. 659 .163 .878

. 853 -.183 -.217

. 506 .575 .734
. 741 .210 -.162

. 968 -.090 .169

. 334 .787 .567

. 345 .760 .018

. 918 .013 .597

.426 .698 .655

. 562 .529 -.075

. 975 -.042 .411

. 011 .946 .346

. 697 .101 .840

.806 -.164 -.249

. 867 .189 .194

. 558 .645 .435

-.017 .923 .078

. 597 .214 .864

. 852 -.182 -.207

*Thurstone, 1947, p. 198

[41
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Once the reference structure matrix has been determined for the u-th

iterative stage Thurstone (1947, p. 205) suggested that the cosines of

the angular separations of the new reference vectors be assessed. His

objective in assessing these cosines was one of being sure that none of

the reference vectors had coalesced. If two reference vectors have

coalesced the cosine of their angular separation, their correlation, will

be unity and it may be assumed that the problem of transforming to

singularity has occurred.

The cosine of the angle of inclination between any two reference

vectors, their correlation, is the scalar product of their paired

direction cosines with respect to the fixed orthogonal frame. Equation

5 may be used to determine the matrix of intercorrelations, Yu, of the

reference vectors of the u-th iterative stage.

Yu
u uu
Y = D

1LIE D-1
u u uuu

Y = D 1S 'V'V S 1
u u mu m m mu u (51

The intercorrelations of the reference vectors as determined in the

second iterative stage for the illustrative example are reported in

Table 6.

Table 6

Intercorrelations of Unit Length Reference
Vectors as Determined in the Second

Iterative Stage* - Matrix Y9

A2 B2 C2

A2

B2

C
2

1.000

-0.266

0.276

-0.266

1.000

0.166

0.276

0.166

1.000

*Thurstone, 1947, p. 198

19
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If the magnitudes of the small reference structure values in the

matrix F have diminished with respect to FM and if the magnitude'; of

the large reference structure values in Fu have increased with respect

to F
rn

it is reasonable to proceed to the next iterative stave. Po ever,

if two unit length reference vectors are highly correlated it is most

.prudent to stop at this particular stage.

Assessing F2 with respect to F (Tables 5 and 1) and seeing that the

magnitudes of the entries in Table 6 are small we may progress to the

next iterative step for the illustrative example.

Subsequent Iterative Stages

Plot a new set of diagrams for all pairs of columns of FU and

examine them to determine the adjustments which will be made in this

particular iterative stage. It is important to note here that Thurstone

plotted F on orthogonal coordinate cross-section paper, even though the

reference vectors were oblique. Thus, the reference vectors of Fu were

plotted as being orthogonal. The logic behind this procedure although

basically simple is frequently quite confusing. For conceptual purposes

it may be assumed that the axes remain invariant and that it is the

configuration of variable vectors that is being transformed. The

apparent paradox is associated only with the plotting of the configuration,

not with the algebra or interpretation of the reference structure loadings.

(The initial papers on the obliquimax were all written within this

conceptual framework and a majority of the algebra was also interDreted

within this framework.) The new sets of diagrams for all pairs of

columns of F
2

are presented in Figures 4, 5 and 6.

In Figure 4 the termini of the variable vectors are plotted with

respect to unit reference vectors A
2

and B
2

. In the third iterative
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Figure 4

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
A
2

and Bo, Projected Onto Plane A,:!,
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stage unit reference vector B
2

is transformed to position B3 and

Al- primary will pass through the group of variable points 3, 15, 20, 6,

9 and 12. The variable vectors associated with these points will have

vanishing projections on long reference vector B.B'3 In the A
2-71: 2

plane

the new long reference vector B3 may be described in terms of A2 and B2.

B3 1.00B2 + .10A
3 2

.10A2

In Figure 5 the termini of the variable vectors have been plotted with

respect to A2 and C
2

. Unit length reference vector has been transformed
C

to A. Notice that C3- primary still passes through the variable points 13,

1 and 18 and additionally through the points 7, 10, 4, 9, 2 and 14, thus

increasing from three to nine the number of variables with vanishing
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Planar Plots of Variable Vector Termini
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projections on the long reference vector Ak The new long reference

vector A'
3
in the A

2
C
2
plane may be described in terms of the unit

reference vectors A2 and C2

A3 = 1.00A
2
- .72C

2

In the same figure C
2
has been transformed to C1

3
such that the

A'
3
-primary passes through the group of variable points 3, 5, 15 and 20.

The variables 13, 1 and 18 retain their vanishing projections on C3 and

additionally variables 3, 5, 15 and 20 also have vanishing projections

on the long reference vector C3. The number of vanishing projections on

the C reference vector has increased from three to seven in the A
2
C
2

plane. Long reference vector C3 may be described in terms of the unit

reference vectors A
2
and C

2
.

C' = 1.00C + .25A
3 2 2

22
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Figure 6

Planar Plots of Variable Vector Termini
With Respect to Unit Reference Vectors
B
2
and C

2
, Projected Onto Plane

sS

In Figure 6 the termini of the variable vectors have been plotted

with respect to unit reference vectors B
2

and C2. Unit reference vector

C
2
has been transformed to C3 so that the B3-primary passes through the

variable points 1, 13 and 18. The new long reference vector C3 in the

B
2
C
2
plane may be described with respect to unit reference vectors B

2'

and C2.

3
= 1.0002 - ..12B2

In the same figure unit reference vector B2 is transformed to 133

such that the C3-primary passes through the group of variable ?oints 2,

14 and 19. The variable vectors 2, 14 and 19 will have vanishing

projections on the long reference vector B. The new long reference

23
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vector Bi
3
in the C

2
B
2
plane may be described with respect to unit reference

vectors B2 and C2.

= 1.00B2 - .20C2

It is not at all uncommon for a reference vector. to be transformed in

numerous planes during a single iterative stagu if (P ;' 3), inasmuch as

there are r(r - 1)/2 possible planar transformations. In this iterative

stage two of the reference vectors were transformed in two planes, thus

they must be described with respect to all three unit reference vectors.

The final descriptions of the new long reference vectors with respect to

the previous unit length reference vectors A
2

, B
2
and C

2
are:

A3 = 1.00A
2
+ 0.00B

2
- .72C

2
;

B3 .10A + 1.00B - .20C
3 2 2 2

C3 = .25A
2

- .12B2 +1.00C
2

(Thurstone, 1947, p. 209)

Thurstone (1947, p. 208) referred to the coefficients of the above

equations as "corrections". The implication was that the new

transformations of the reference vectors are simply corrections of the

previous transformation. It is prudent to realize that these corrections

as reported in this paper were determined subjectively by Thurstone. He

has numerous subjective "rules of thumb" that he utilized when determining

these corrections (See Thurstone, 1947, pp. 207-210; 212-216).

The coefficients of the three linear equations are the direction

numbers for the three new long reference vectors with respect to the

previous unit length reference vectors. That is to say, the coefficients

are the entries of the matrix of direction numbers 5,, m = 2 and it = 3.
26

The entries of Table 7 by column represent the coordinates of the

termini of the new long reference vectors with respect to the previous



Table 7

Direction Numbers of Third Iterative Stage
Reference Vectors with Respect to the Unit Reference
Vectors of the Second Iterative Stage* - matrix So3

A'
<5

PIPI C'
3

A2 1.000 0.100 0.250

B2 0.000 1.000 -0.120

C
2

-0.720 -0.200 1.000

*Thurstone, 1947, p. 209

unit reference vectors. The coordinates of the terminus of B' with

respect to A2, B2 and C2 would be (.10, 1.00, -.20).

To convert the direction numbers S23 to the matrix of direction

numbers with respect to the fixed orthogona3 fravo 7 L3, Equation 1 is

used.

L3 = V2S23

In Table 8 the direction numbers of the new long reference vectors

A', V
3 3
and Cr, are reported with respect to the axes of the fixed

3-

orthogonal framework, Ao., Bo and C
o

.

Table 8

Direction Numbers Of Third Iterative Stage
Reference Vectors With Respect To The Original

Fixed Orthogonal Framework* - Matrix £3

A' B' C'
3 3 3

A
o

.476

B
o

.669

C
o

.668

*Thurstone, 1947,

25

.447 .503

-.829 .275

.186 -.928

p. 209

1
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The entries of L
3'

Table 8, by column represent the coordinates of

the termini of the long reference vectors with respect to the axes 10,

B0 and CO. With respect to the original axes Ao' B
o and C

0
the coordinates

for the terminus of CI
3
are (.503, .275, -.928).

Table 9

. Lengths Of The Long Reference Vectors Determined
In The Third Iterative Stage* - Matrix D3

A'
3

131
3

C'
3

1.06 .00 .00

.00 .96 .00

.00. .00 1.09

As in the previous iterative stage it is necessary to rescale the

metric of the long reference vectors to that of unit length reference

vectors. The squared lengths of the new long reference vectors, 3D
2

are)

computed through the use of Equation 2, Table 9. Matrix L
3

is column

normalized to form the matrix of direction cosines, V3, of the new unit

length reference vectors with respect to the fixed orthogonal frame,

Equation 3. The matrix of direction cosines for the third iterative

stage is reported in Table 10.

Table 10

Direction Cosines of Third Iterative
Stage - Matrix V3

A3 B3 C
3

A0

Bo

C0

0.450

0.632

0.631

0.466

-0.864

0.194

0.461

0.252

-0.851

.

*Thurstone, 1947, p. 209 26
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The reference structure matrix associated with the third iterative

stage, F3, is computed using Equation 4. The reference structure matrix

F
3
is reported in Table 11.

Table 11

Reference Structure Matrix As Determined
By The Third Iterative Stage* - Matrix' 23

A
3

B3 C3

1 -.082 .970 .001

2 .026 .055 .938
3 .954 -.058 .016

4 -.021 .500 .723

5 .811 .330 -.002

6 .800 -.031 .387

7 -.071 .737 .510
8 .314 .825 .011

9 .462 -.017 .756

10 -.043 .636 .621

11 .582 .626 .002

12 .642 -.030 .605

13 -.090 .958 .032

14 .088 .001 .919

15 .931 -.037 -.026

16 .688. .246 .356

17 .231 .641 .456

18 -.070 .946 -.035

19 -.024 .104 .905

20 .945 -.060 .026

*Thurstone, 1947, p. 209

The intercorrelations of the new unit length reference vectors are

computed using Equation 5. The matrix of intercorrelations of the unit

length reference vectors, as as determined in the third iterative stage

is reported in Table 12.

The magnitudes of the loadings in Table 11 are assessed with respect

to the loadings in Table 5. Clearly the small loadings are diminishing

and the large loadings are increasing. None of the off-diagonal entries
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Table 12

Intercorrelations of Unit Length Reference Vectors
As Determined By The Third Iterative Stage* - Matrix Y

ti

A
3

13
3

C
3

A3 1.000 -0.214 -0.171

B3 -0.214 1.000 -0.169

C3 -0.171 -0.169 1.000

*Thurstone, 1947, p. 209

of Y
3
are approaching unity. A fourth iterative stage is in order.

A detailed discussion of the fourth iterative stage will not be

presented in this paper. As with the previous iterative stages the

columns of the previously determined reference structure matrix are

plotted. The direction numbers of the new long reference vectors are

estimated. The direction cosines are determined and the fourth iterative

stage reference structure matrix is computed from F. The fourth

iterative stage is the final iterative stage for the illustrative

example. The reference structure matrix and the reference vector

intercorrelation matrix as determined by the fourth iterative are

presented in Tables 13 and 14 respectively.

28



Table 13

Reference Structure Matrix As Determined
By The Fourth Iterative Stage* - Matrix /74

A
4

B
4

C
4

1 .006 .965 .001'

2 .032 .009 .938
3 .964 -.010 .016
4 .025 .462 .723
5 .854 .370 -.002
6 .810 -.009 .387
7 -.003 .707 .510
8 .395 .840 .011
9 .468 -.031 .756

10 .015 .602 .621
11 .649 .654 .002
12 .649 -.027 .605
13 -.003 .951 .032
14 .090 -.040 .919
15 .943 .012 -.026
16 .721 .263 .356
17 .294 .629 .456
18 .016 .943 -.035
19 -.014 .058 .905
20 .955 -.013 .026

*Thurstone, 1947, p. 213

Table 14

Intercorrelations of Unit Length Reference Vectors
As Dete.rmined In Tha Fourth Iterative Stage* - Matrix Y4

A
4

B
4

C
4

A
4

1.000 -0.066 -0.188

B
4

-0.066 1.000 -0.226

C
4

-0.188 -0.226 1.000

*Thurstone, 1947, p. 213

.

2 8
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Additional Algebraic Aspects of Thurstone's Iterative Methodology:

After the first iterative stage Thurstone defined, algebraically, a

second type of transformation matrix ThisThis transformation matrix,

H
muo

.was used in conjunction with Fm, the previously computed reference

structure matrix, to compute the u-th reference structure matrix, Fu.

The matrix equations for computing Fu, disregarding Hmu, are reported by

Equation 4.

1F = FV S D-
u m umu

F = FL DFu u u
1

F
u
= [4]

Thurstone defined L
u

in terms of I'm and S
mu

, equation 1. The matrix

Lu is geometrically meaningful. However, is defined in terms of Smu mu

and D
u
/

and does not appear to be geometrically meaningful.

H = S -1
mu mu

D
u

The matrix F is defined as the product of the previous reference

structure matrix, Fre post-multiplied by H.

F = F HFu
m mu

Fu = FVmHmu

[5]

[6]

[7]

The matrix H therefore transforms F to F
u

The elements of H
mu mu

are neither direction cosines nor direction numbers. The entries of Smu

are expressed within the metric of the m-th stage unit reference vectors

while the entries of D
u
2 are expressed within the metric of the original

fixed orthogonal frame. Any transformation matrix may be expressed as

a product of all previous H-matrices (Thurstone, 1947, p. 206).

1/114 = (H01)(H12)(H23)(H34)... (Hmu)

30
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For the illustrative example the H-matrices associated with third

and fourth iterative stages are reported in Tables 15 and 16. For the

second iterative stage H
12

is identical to V3.

Table 15

H-Matrix Computed For The Third
Iterative Stage* - Matrix 1123

0.945 0.104 0.229

0.000 1.042 0.110

-0.680 -0.208 0.917

*Thurstone, 1947, p. 198

Table 16

H-Matrix Computed For The Fourth
Iterative Stage* - Matrix H34

1.016 .050 .000

.091 .999 .000

.000 -.050 1.000

*Thurstone, 1947, p. 209

The functiOn of Hmu may be thought of as providing an alternative

method of computing Fu directly from Fm as opposed to computing Fu from

F through the use of Vu.

Summary of Section 1:

Thurstone's (1947) method of determining oblique transformations has

been presented within the context of two dimensional sections. Through

the use of an illustrative problem his terminology and matrices were

discussed. Although certain aspects of Thurstone's approach were modified

it may be assumed that the discussion presented in this section was taken

31
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from Thurstone (1947, pp. 194-224) and typifies his approach to oblique

transformation solutions.

There are numerous objections to Thurstone's procedures, all of

which are either directly or indirectly associated with the matrix Or,.

The matrix S
mu is the subjective matrix of direction numbers defining

the termini of the u-th iterative stage long reference vectors with

respect to the unit length reference vectors of the m-th iterative stage.

It would be extremely difficult for two factor analysts working

independently on the same factor matrix to determine identical oblique

solutions when using Thurstone's technique. It would be a most arduous

task for a beginning student to apply Thurstone's methodology successfully

to a set of data in which (r > 3). Thurstone's method becomes prohibitive

timewise as the number of factors increases inasmuch as r(r - 1) /2 plots

are required at any one iterative stage to determine S. It is

conceivable that a bad estimate of Smu might be obtained at some early

iterative stage and not be recognized as such for several iterative

stages. Finally, Thurstone's method is just too time consuming and

unreliable for all except the most experienced factor analyst.

Section II
A Basic Theoretical Rationale For The Simplified
Obliquimax As Provided By The General Obliquimax

In this section the general obliquimax is briefly discussed with

respect to the matrix equations defining an oblique solution. Special

emphasis is placed on the matrix of direction numbers, Lu as discussed

in Section I, and the solution matrices expressed within the metric of

the original factor solution. This section discusses oblique solutions.

within the framework of variance modification and allocation. The
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function of this section is to provide a basic theoretical rationale for

the development of the simplified obliquimax in Section III.

Common Variance Modification and Allocation:

In determining an oblique transformation, a majority of the reference

vectors, if not all of them, will covary having non-zero perpendicular

projections upon each other as opposed to an orthogonal transformation in

which none of the factor axes covary. Within the obliquimax framework

the total common variance associated with an initial factor so_ution is .

defined as the total sum of the squared projections of the variable

vectors onto the initial factor axes. The common variance associated

with any one of the initial common factors is defined as the sum of the

squared perpendicular projections of the variable vectors onto that

factor axis. An orthogonal transformation will not change the total

common variance but it will in general alter the sum of the squared

perpendicular projections associated with each common factor.

When working within an oblique framework the process of column

normalizing the direction numbers to form the matrix of direction cosines

is actually a process of converting the metric from that of the initial

fixed frame to the metric of the unit length reference vectors of the

particular iterative stage associated with the direction cosines. Thus,

for each iterative stage of an oblique solution the metric is changed'

and is not comparable to the metric of the initial fixed frame. Because

of this metric variation the sum of the squared perpendicular projections

of the variable vectors onto the reference vectors are neither comparable

between iterative stages nor comparable with the sum of the squared

projections onto the factor axes of the initial fixed frme.

33
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The metric of the initial fixed frame may be retained in an oblique

solution ii the matrix of direction numbers, previously defined by

Equation 1, is used in place of the matrix of direction cosines,

previously defined by Equation 3. The entries of the resulting

"structure "* matrix would represent the perpendicular projections of the

variable vectors onto the reference vectors, but the entries would be

expressed within the metric of the initial fixed frame. Within

Thurstone's terminology such a matrix would be referred to as a long

reference vector structure* matrix inasmuch as the entries are analogous

to perpendicular projections of the variable vectors onto the long

reference vectors as opposed to unit length reference vectors. When the

metric is held constant in this fashion, it will be observed that the

total sum of the squared projections of the variable vectors onto the

long reference vectors is less than the total sum of the squared

projections of the variable vectors onto the initial fixed axes. In the

next subsection it will be demonstrated that the difference between the

sum of the squared projections of the two matrices is accounted for by

the perpendicular projections of the primary vectors onto each other,

the covarying of the primary vectors.

Within this framework the role of the direction numbers of the long

reference vectors with respect to the initial fixed axes, Lu, is one of

defining the long reference vectors in such a manner that the sum of the

squared perpendicular projections of the 'variable vectors onto these long

* In a latter portion of the next subsection it will be demonstrated
that the long reference vector structure matrix is not the only meaningful
name that might be given to the matrix being discussed.

34
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reference vectors is less than the sum of the squares of their projections

onto the initial factor axes. There should be some systematic relationship

between the matrices of direction numbers determined in SUCCO3SiVC

iterative stages such that the sum of the squared perpendicular proj,2ctions

of the variable vectors onto the long reference vectors becomes successively

smaller at each stage. It will be demonstrated that such a framework will

provide numerous conceptual and algebraic advantages.

Theoretical Equations for the General Obliquimax Transformatim:

The objective of this subsection is to provide a basis for the

computational aspects of the simplified obliquimax through a brief

presentation of the equations and logic for the general obliquimax (Hofmann, 1971).

'\.ssume some initial factor loading matrix F, defining the perpendicular

projections of n variable vectors onto r mutually orthogonal factor axes as

determined by the initial factoring method. The problem is to select by u,

successive approximations the unit reference vectors Au, Bu and Cu such

that the number of variable vectors with vanishing projections onto these

unit reference vectors is a maximum. (Where deemed necessary for

illustrative purposes r will be assumed to be three.)

In the obliquimax transformation all matrices of direction numbers

are defined as the product of some positive definite diagonal matrix and

some orthonormal transformation matrix, T. A matrix of direction numbers

developed in this manner, and the ensuing matrix of direction cosines, will

always be non-singular and generally non-orthogonal. This somewhat unusual

approach was first suggested by Harris and Kaiser (1964) in their classic

paper on determining oblique transformation solutions through the use of

orthogonal transformation matrices. Although the discussion in this paper



will only encompass their case I and case II solutions, the general

obliquimax encompasses all three of the cases discussed by Harris and

Kaiser.

Let the ii-th element of the positive definite diagonal matrix P'4,

represent the sum of the squared projections of the n variable vectors

onto the i-th factor axis associated with F.

D2D = diagonal [F'F] [9]

All matrices of direction numbers within the general obliquimax

framework are defined specifically as the product of some exponential

power, p, of D and an orthonormal matrix T. Equation 10 represents the

matrix of direction numbers, Lu, for defining the termini of the u-th

iterative stage long reference vectors with respect to the initial fixed

frame.

Lu = D-PT [10]

Along with the algebraic advantages of such a definition of L
u'

there

are several conceptual and interpretative advantages. In defining the

positive definite diagonal matrix as some exponential function of the

column sums of squares of F, the matrix of direction numbers is implicitly

some function of the common variance and hence a function of the

perpendicular projections of the variable vectors associated with F.

The matrix F may be rewritten as:

F = ED. [11]

The matrix E is the column normalized form of F and the elements of D

are the square roots of the elements of D
2

. The matrix F may be post

multiplied by Lu to form Fu which would be the matrix whose elements

represent the perpendicular projections of the variable vectors onto the

long reference vectors determined by the u-th iterative stage.

Fu = FLu = FD-PT

36
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There are several important aspects of Equation 12 that should be

noted. Any matrix of direction numbers within Lhe general obliquimix.

framework is simply a row resealing of T by some exponential power, r,

of the matrix D. Equation 12 may be rewritten as Equation 13.

= EDDPT [i3]

AThe discussion of common variance associated with
u will be based upon

the sum of the squared perpendicular projections onto the r long reference

vectors associated with F. Inasmuch as the columns of E are normalized,

the matrix product (DD-PT) defines the allocation of the perpendicular

projections of the variable vectors onto the long reference vectors. That

is to say, the common variance, within the metric of the initial fixed

frame, associated with F
*

can be discussed with respect to the matrix

(DDPb.

The matrix T is an orthonormal matrix af.direction cosines. Therefore,

the sum of the squares of any column or row of T is unity (VT = TT' = 1) .

The square of any cosine is a proportion. The square of any diagonal

element of (DDP) is a portion of the total common variance associated

with F. The variance aspects of 141u can be discussed through a consideration

of the squared 'elements of (DD PT). The variance discussed within this

specific framework would be with respect to the sums of the squared

perpendicular projections of the n variable vectors onto the r long

reference vectors. A symbolic representation of the squared elements of

(DD PT) is reported in Table 17.

The variance contributed by fixed axis A0 to the sum of the squared

perpendicular projections of the n variable vectors onto all r long

reference vectors is (i
2

1 11
Ai 1°2 ). the variance contributed by fixed axis

1

B
o

is
(i22

Ai2122 1°). the variance contributed by fixed axis C
o

is (1
33
11).

2 33
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Table 17

Symbolic Representation of the Squared
Elements of (RO-PT) (assume r = 3)

A' B' C'

A
o

Bo

C
o

/a2 /.71),__ 2n
1"111`4111u8 11

(d2 /d2)
22 2 c" 20

21

d2
,5

,./d2P33) cos2031
3

(d2 /d2P)cos24z
11' 11' 12

(d2
2 22
/d2P)cos2

22
2 2p

(d 33/d 33) cos
2
1332

(d2 /12F
11 G11)°'9° 13

(d2 id 2P2) coa21323

..2 ..%)
(d33/a3 cos

2
0
33

(Other than noting that the exponent p will be chosen such that the total

column sums of squares of Fu is less than the total associated with F

discussion of p will be deferred at this point.) The proportion of that

variance contributed by Ao, (d1 i/di21p, that will be allocated specifically

to the sum of the squared projections of the variable vectors onto long

reference vector: AL is cos
2

f311;
B4 is cos

2
012; Cu is cos

2
$13. A

similar interpretation may be made for the other (24 - 1) fixed axes with

respect to the sum of the squared projections of the n variable vectors

onto the r long reference vectors.

A portion of the total variance associated with a fixed axis is

allocated to the sum of the squared perpendicular.projections of the

variable vectors onto the long reference vectors. The discussion here

concerns the proportionate distribution of this variance by a fixed axis

to each of the long reference vectors. The portion of variance associated

with the j-th fixed axis that is allocated to the sum of the squared

perpendicular projections of the n variable vectors onto the r long

2
reference vectors is always (da/dap ). Of that particular portion of

variance, the proportionate allocation to the i-th long reference vector
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is cost = 1, 2,...r). Therefore, at any particular iterative

stage the only value that will be altered in Table 17 is the exponent p.

(In the definitive paper on the general obliquimax, Table 17 is further

modified to provide additional information about the reference vectors.)

To further clarify the role of variance modification in the general

obliquimax, it is necessary to discuss the variance covariance matrices

associated with both the reference vectors and the primary vectors. Let

the symmetric matrix R*, of order n by n and singular of rank r, be the

major product of F.

R* = FF' [13]

The matrix R* is a reproduced matrix whose off-diagonal elements

approximate either the observed correlations or covariances between the

n variables.

For any oblique solution Equation 14 must hold.

R* = Fu(YuriFL [14]

The matrices F
74

and Yu were previously defined by Equations and 5.

Let the matrix Zu represent the matrix of intercorrelations associated

with the r unit length primary vectors. Then by definition, Zu is the

normalized inverse of Yu (Thurstone, 1947, p. 215). Let the matrix D' be

-
defined as the diagonal of Yu

/
, therefore pre- and post-multiplication of

Yu
/
by D31 will result in the matrix of intercorrelations for the primaries.

D
3
= diagonal [Y

-1
] [15]

- - -/
Z
u

= D
3

/
(Y
u
/
)D. [16]

Through substitution from Equations 2, 3, 5 and 10, the matrix Yu may be

defined algebraically within the obliquimax framework.

/ 2p /
Yu = Du T'D TD

u
[17]
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Following from Equation 17 is the algebraic definition of within the

obliquimax framework.

Z = D-1(D TiD2PTD")D-1 =
2p -1

u 3 u 3
D )(T'D T)(1) D, ) [18]

14 3 u ,

In Equation 18, the matrix product of (D;1D,) is just the diagonal mitrix
t,

that normalizes the columns of (DPT). The matrix (-7,'", )

-/
Ls the variance

covariance matrix, Z;:, associated with the long primary vectors. Thus, 7*
'u

is just the inverse of Yu.

Y* = TT-22'T

T'D2'T = riV-1

[19]

[20]

It is immediately apparent from Equations 19 and 20 that the only

algebriac difference between the primary variance covariance matrix and

the reference variance covariance matrix is the sign of the exponent p.

Furthermore, the only algebraic difference between the matrix of direction

numbers, (DPT), for the primary structure matrix, and the matrix of

direction numbers, (D-PT), for the reference structure matrix, is the sign

of the exponent p. Thus, the matrix of direction numbers for the long

primary structure matrix is just the transpose of the inverse of the

matrix of direction numbers for the long reference structure matrix.

Equations 19 and 20 incorporate the metric of the initial fixed axes.

Utilizing Equations 19 and 12 it is possible to redefine R* using

matrices expressed in the metric of the initial fixed axes.

R* = Fu *(Yu*)-1F*u 1 [21]

By substituting Zu for (Yu)-1 Equation 22 results.

R* = 444' [22]

The trace of R* represents the total common variance and it is equal to

the total column sums of squares for the matrix F. Equation 22 is presented

to demonstrate that the total variance associated with F may be thought of as



being distributed between Fu and Zu. In explaining Table 17 the variance

associated with Fu was discussed with respect to the sum of the squired

perpendicular projections of the n variable vectors onto the r long

reference vectors. It was pointed out that the variance associated with

Fu would always be less than the variance associated with g. It may

therefore be concluded that the common variance not allocated to 7* niust

be allocated to Z.Z*u
The variance allocated to Z* accounts for the

perpendicular projections of the r long primary vectors onto each other.

The variance associated with Zu can be discussed with respect to (LiPT),

the matrix of direction numbers for computing the primary structure

matrix. Although interest here does not center on the primary structure

matrix, it may be inferred from Equation 22 that the matrix of direction

numbers associated with such a matrix is instrumental in explaining

variance allocation. The variance aspects of Z* can be discussed through

a consideration of the squared elements of (DoT). A symbolic representation

of these squared elements is reported in Table 18.

Table 18

Symbolic Representation of the Squared
Elements of (5PT) (assume r = 3)

At-Primary Bt-Primary Ct-Primary

Ao

Bo

C
o

d
2p

cos
2

p.

1
d2P cos2= d2P 0932=

11 11 '12 11 '13
2p 2 2p 2 fp

d
22

cos P.

21
d
22

co
P

(S

22
d cos

23zi.:.

p 2 2
d
2

cos
2

f3. dap cos
2

13 d
p

cos 1^,

33 31 33 32 33 . 33

The variance contributed by fixed axis Ao to the sum of the squared

perpendicular projections of the long primaries onto each other is 0.2).
// '

the variance contributed by fixed axis Bo is (d2P).
'

the variance
22
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2
contributed by fixed axis C

o
is (d

33

p
). The proportion of that variance

contributed by A
o

, (d2P)
'

that will be allocated to the sum of the squared
//

perpend-Lcular projections of the (r - 1) long primary vectors onto long

primary vector: Au is cos
2

(3.

//' u
B' is cos

2
R
12

Cu is coo
2
Q
.13

. A similar
' u '''

interpretation may be made for the other (r - 1) fixed axes with respect

to the sum of the squared perpendicular projections of the r long primary

vectors onto each other.* .

A portion of the total variance associated with a fixed axis is

allocated to the sum of the squared perpendicular projections of the long

primary vectors onto each other. The discussion with respect to Table 18

concerns the proportionate distribution of this variance by a fixed axis

to each of the long primary vectors. The portion of variance associated

with the j-th fixed axis that is allocated to the sum of the squared

perpendicular projecticns of the r long primary vectors onto each other

,i2p,
is always ka..). Of that particular portion of variance, the proportionate

Od
2

allocationtothei-allotigprimaryvectoriscosRo,(i = 1, 2,...r).

Therefore, at any particular iterative stage, the only value that will be

altered in Table 18 is the exponent p.

Comparing Tables 17 and 18, several generalizations may be made.

The variance associated with the i-th fixed axis, dii, may be divided

2
into two multiplicative portions (dii/dii2p) and (dii2p ). One portion of the

variance, (A./d2.P.)
'

is associated with the sum of the squared
22 2

perpendicular projections of the n variable vectors onto the r long

reference vectors. The second portion of the variance, (d2p iii), is

associated with the sum of the squared perpendicular projections of the

r long primary Vectors onto each other. The proportionate contribution

2p
of (

14,
2../d.., ) made to the sum of the perpendicular projections of the n

IA

Rij also*The element cos represents the perpendicular projection of

the Jong reference vector j onto the i-th fixed axis. 42
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variable vectors onto the j-th long reference vector is cos
2
13... The
2,7

2p
proportionate contribution of (dip) to the sum of the squared

perpendicular projections of the Cr - 1) long primary vectors onto the

j-th long primary vector is cos2Sij. Equation 23 defines the division

of variance for the i-th fixed axis.

2 2p 2p
dii = (dii/dii)(dii).

42

[23]

Several observations with respect to p can be made from Equation 23.

If (p = 0), there will be no allocation of variance to the projections of

the primaries onto each other and the associated solution will be an

orthogonal transformation solution. If (p = 1), all of the variance will

be allocated to the projections of the primaries onto each other and the

resulting oblique solution would be analogous to the Harris and Kaiser

(1964) independent cluster solution. As the value of p progresses from

zero to unity, the amount of variance allocated to the projections of the

primaries onto each other becomes progressively larger. Thus, as p

progresses from zero to unity, one should expect the primary vectors to

become progressively more correlated. One might be inclined to limit the

values of p to values within the interval bounded by zero and unity, but

there is at this time no rationale for such a limitation. (For some sets

of empirical data the general obliquimax has iterated to a value of p

that is slightly larger than unity.) It is prudent to realize that for a

value of p considerably larger than unity, but not necessarily larger

than three, some of the diagonal entries .of DP might approach zero and

.

the matrix D
p
will not for all practical purposes be a positive definite

matrix. (Theoretically, DP will always be positive definite however

computationally some near zero values will function as zeros.)
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Within the framework defined, the only algebraic value that changes

,*
from one iterative stage to the next in defining Pu is the exponelt p.

The discussion, however, has centered around the long reference vectors

and long primary vectors. Traditionally an oblique solution is interpreted

within the framework of either unit length reference vectors or unit

length primary vectors. In order to establish the oblique solution within

a traditional framework it will be necessary to compute the diagonal

*
matrices that will rescale F

*

) uY
*
and Zu to the metric of unit lengthu

vectors.

From Equations 2, 3 and 4 it may be inferred that the diagonal matrix

for rescaling F
*

a
to the unit length reference structure matrix is

determined from the diagonal of (ELLu). In the previously mentioned

-
equations this diagonal matrix was referred to algebraically as Du

1
.

Within the obliquimax framework this diagonal matrix will be referred to

as D
u1

The matrix D u2
1
is defined by Equation 24.

Du2 /
= diagonal [T'D

-2
PT] [24]

Equation 4 may be rewritten as Equation 25 to define the unit length

reference structure matrix within the algebraic framework of the

obliquimax. .

Fu = FD
-p
TD

u1
[25]

In Equation 20 the variance covariance matrix of the long primary

vectors, Z
u,

was defined as the inverse of the long reference vector

variance covariance matrix. It was inferred from Equations 19 and 20

that the matrix of direction numbers for transforming F to the long

primary structure matrix was just the transpose of the inverse of the

matrix of direction numbers necessary to transform F to the long

-eference structure matrix. However, the primary structure matrix is not
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generally used for interpretative purposes. It is the primary pattern

matrix that is interpreted within Holzinger's framework. The matrix

necessary to transform the initial matrix F to the primary pattern

matrix, denoted as W
u'

is by definition the transpose of the inverse of

the primary structure transformation matrix. The primary structure

transformation matrix is just the column normalized form of the

direction numbers associated with the long primary vectors. Let D
-1
va

represent the diagonal matrix that normalizes the columns of (DP1T).

Then from Equations 24 and 25 Equations 27 and 28 follow as:

D
2
= diagonal [T'D

2p
T];

u

u
1T,D2pTDu2-1.

[27]

[28]

Let the matrix (DPTD:12) represent the transformation matrix for the

primary structure matrix. The transpose of the inverse of this matrix is

(DPTD1 )
u2

The matrix necessary to transform F to the primary pattern matrix,

Wu, as determined by the u-th iterative stage is (0-PTD u12
).

Wu = FD PTD1
u2

[30]

However, if reference is made to Wu, the parallel projections of the n

variable vectors onto the r long primary vectors, then the entries being

referred to are parallel projections within the metric of the initial

is jfixed frame. That is to say, Wu s ust Wu without the column resealing.

W
*

u = FD PT [:31]

Comparing Equation 31 with Equation 12 it becomes immediately evident that

* p
W U = F '24 = FD T. [32]

The Holzinger parallel projections of the g variable vectors onto

the r long primary vectors are identical to the Thurstone perpendicular

projections of the n variable vectors onto the r long reference vectors.
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That is to say, when the metric of the initial factor solution is retained

in place of either unit length reference vectors or unit length primary

vectors the Holzinger pattern matrix and the Thurstone structure matrix

are identical. (In earlier papers on the obliquimax 4 and 4 were

referred to as one matrix, the "basic matrix.")

The above paragraph follows logically from an earlier paper presented

by Harris and Knoell (1948) in which they derive a diagonal matrix that

will rescale the columns of a Holzinger pattern matrix to those of a

Thurstone structure matrix. The inverse of this matrix will rescale the

columns of a Thurstone structure matrix to those of a Holzinger pattern

matrix. Their discussion centered around the geometry of the two

solutions and was considerably less complex, algebraically, than this

section.

In their discussion Harris and Knoell (1948) demonstrate that the

Thurstone structure values represent the bases and the Holzinger pattern

values represent the hypotenuses of similar right-angled triangles. The

elements of the diagonal rescaling matrix that they use for their

conversion represent the correlations between the reference vectors and

their associated primary vectors. They note that a primary vector is

defined by the intersection of (r - 1) hyperplanes and it is uncorrelattd

with the normals to these hyperplanes. Therefore, each primary vector is

by definition orthogonal to all but one reference vector. Each reference

vector is correlated with just one primary vector.

The correlation between a unit length reference vector and a unit

length primary vector is defined as the scalar product of the paired

direction cosines of the vectors. Equation 33 defines the diagonal

matrix Dr whose ii-th element represents the correlation between the i-th

46



reference vector and its associated i-th primary vector.

Dr = (D-p) -PXDPTD1) = DD-1
r u1 u2 u1 u2

Summary of Section II

46

1331

The basic framework for the general obliquimax has been discussed.

The algebraic definitions of certain oblique solutions were discussed

within the framework of common variance and perpendicular projections.

The "solution equationd'of the general obliquimax may now be summarized.

Reference Structure = FD
-p

TDul

Primary Pattern = FD-PTDu2

-1
Primary Intercorrelations = Du2T D

2p
TDu2

- -1
Reference Intercorreiations = Du11T'D

-2p

1Du1
-1 -1

Intercorrgations Between Primaries and Reference Vectors = D
u1
D
u2

The discussion presented in this section is by no means complete.

There has been a minimum of discussion concerning the, exponent p and

there has been no discussion with respect to the specific computation of

T. In the next section the computation of T will be briefly discussed

and the use of the exponent p will be somewhat clarified. This section

has provided a basic rationale for the equations to be used in the

simplified obliquimax.

Section III
The Simplified Obliquimax

Having discussed certain interpretative properties of the direction

numbrs and defined in part Lha analytic computations of the direction

numbers it is now possible to re-establish the problem of computing an

oblique transformation within an obliquimax framework. The iterative

procedure developed in this section, referred to as the simplified

*obliquimax, is developed for pedagogical purposes. Certain matrices are

41
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modified in the iterative process to provide computational simplicity.

The simplified obliquimax is a reliable semi-subjective transformation

procedure that will allow beginning students to successfully compute an

oblique transformation solution. It is also hoped that the simplified

obliquimax will clarify certain aspects of oblique transformations in

general.

Assume some factor loading matrix, F, defining the perpendicular

projections of n variable vectors onto r mutually orthogonal factor axes.

The 21 axes are arbitrarily orthogonal axes as determined by the initial

factoring method. For illustrative and comparative purposes the

simplified obliquimax will be discussed within the framework of

Thurstone's (1947, pp. 140-144) classic box problem. The centroid

solution for the box problem is reported in Table 1. For this particular

set of data (n = 20) and (r = 3).

The r axes may be denoted as Ao, Bo and Co. These arbitrary axes

are regarded as fixed in position. The problem is to select by u

successive approximations the unit reference vectors, Au, Bu and Cu,

such that the number of variable vectors with vanishing projections onto

these unit reference vectors is a maximum.

With the exception of the exponent p and the final diagonal rescaling

matrices all matrices necessary for computing either a reference structure

or a primary pattern matrix can be determined prior to the computation

of p. Thus, the problem at hand is one of determining a value for the

exponent p such that the associated reference structure matrix will have

a maximum number of vanishing projections.

In starting the iterations for the simplified obliquimax the matrix

D
2
2
is determined front F through the use of Equation 9. Presented in

Table 19 is D2 whose ii-th element represents the total sum of the

48
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squared projections of the n variable vectors onto the i-th fixed axis.

D2 = diagonai [ F'F] [9]

Table 19

The Positive Definite Diagonal Matrix Whose ii-th
Element Represents the Variance with

the i-th Fixed Axis - Matrix D

Ao B
o C

o

12.567 .000 .000

.000 3.920 .000

.000 .000 3.154

The orthonormal transformation matrix T used in the simplified

obliquimax is computed from F using Kaiser's (1958) normal varimax

transformation procedure. A complete rationale for the use of the normal

varimax transformation is beyond the scope of iliis paper. A very basic,

though not particularly compelling, rationale for its use is that a

primary vector may be defined in a special sense as a linear least squares

approximation to a group of variable vectors without the restriction of

mutual orthogonality and the normal varimax axes are with the restriction

of mutual orthogonality in a special sense a linear least squares

approximation to a group of variable vectors. It is assumed, and as will

be seen, this is a critical assumption, that if the restriction of

orthogonality were placed on the primary or reference vectors they would

occupy the precise positions of the varimax axes.

Initially the matrix F must be transformed orthogonally to determine

T. The matrix FT will be utilized in the simplified obliquimax as opposed

to F. The matrix FT may be thought of as a preparatory matrix for the
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iterative stages (see Table 20 for FT). The varimax axes will be assumed

as the initial r unit length reference vectors and will be refeared to as

Av, By and Cy. (The subscript V referring to orthogonal varimax axes.)

As in Thurstone's procedure the r unit length reference vectors are

initially assumed to be mutually orthogonal. Contrary to Thurstone's

procedure the initial unit reference vectors of the simplified

obliquimax are not collinear with the r initial factor axes.

Table 20

Initial Factor Matrix Orthogonally
Transformed By Normal Varimax - Matrix FT

Ay By

1 0.052 -0.990 -0.109
2 0.146 -0.142 -0.973
3 0.984 -0.050 -0.103
4 0.135 -0.576 -0.803
5 0.887 -0.431 -0.117
6 0.872 -0.094 -0.472
7 0.091 -0.797 -0.605
8 0.443 -0.887 -0.141
9 0.566 -0.102 -0.820

10 0.118 -0.705 -0.710
11 0.692 -0.711 -0.134
12 0.733 -0.095 -0.681
13 0.046 -0.980 -0.139
14 0.200 -0.092 -0.954
15 0.958 -0.065 -0.060
16 0.790 -0.362 -0.462
17 0.384 -0.726 -0.568
18 0.057 -0.963 -0.071
19 0.097 -0.185 -0.940
20 0.975 -0.048 -0.112

Although graphical plots are not necessary in computing the simplified

obliquimax they are presented initially for comparative and illustrative

purposes. Figures 7, 8, and 9 represent the planar plots of the variable

points with respect to the fixed axes. Also included in these figures are

the projections of the unit reference vectors Av, By and Cv.

50



Figure 7

Planar Plots of Variable Vector Termini with Respect
to Fixed Axes A' and B

a' Projected Onto Plane A0/30
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Figure 9

Planar Plots of Variable Vector Termini with Respect
to Fixed Axes Bo and Co, Projected Onto Plane B0C0

The normal varimax transformation matrix, T, is a matrix of direction

cosines defining the unit reference vectors Av, By and CV with respect to

the fixed axes Ao, Bo, Co. This matrix will be utilized in all iterative

stages and is presented in Table 21.

Table 21

The Orthonormal Transformation Matrix Computed From F By
The Normal Varilmax Transformation Procedure - Matrix T

.0:

i
Av By C

v

A
o

.587 -.572 -.574

Bo .564 .797 -.217

C
o

.581 -.196 .790

.
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In the previous section it was established that a good estimate of

p will usually be some number bounded by zero and unity. Select some

small number less than unity but greater than zero and call that number

x. The initial estimate of the exponent p will be x. For the

illustrative example x is chosen to be .20. (This choice for the

illustrative example is not arbitrary. The rationale for choosing .20

instead of .05 or .50 will become apparent. In practice a choice of .10

would be a very safe estimate.)

Using x, T and D a matrix of direction numbers is defined as TID T.

This matrix of direction numbers defines the termini of a new set of long

reference vectors with respect to the axes of the orthogonally

transformed matrix FT or the varimax axes andBy and Cv. Because the

matrix T is orthonormal post-multiplying FT by T'D-xT will result in an

Equation, 34, analogous to Equation 12.

Fu = FD-PT [12]

F* = (FT)(T1D-xT) = FD-a3T [34]

Effectively, the post-multiplication of (FT) by (F1D-xT) is the same as

post-multiplying (F) by (D 'T) if p = x. The matrix (VDxT) corresponds

to the subjective Thurstonian matrix S
12

at this point of the paper,

however it will be referred to simply as S and for subsequent iterative

stages it will be somewhat different in function than Thurstone's Smu matrix.

k A

S = 271.0.-XT [35]

p

In Figures 10, 11 and 12 the variable points have been plotted with respect

to the columns of FP (see fablq 20). The termini of the long reference

vectors PI, .81 have been plotted with respect to Ay, By and Cv,
Jito 1

the varimax axes. The coordinafies for the termini of the new long reference

vectors with respect to varimax axes Av, By and Cy (initial r unit length

reference vectors) are given by the columns of the matrix S in Table 22.



Table 22

Symmetric Matrix of Direction Numbers of First
Iterative Stage Reference Vectors with Respect

To Previous Reference Vectors* - Matrix S

A'u B'u C'u

A'
u-1

B'
u-1

C'
u-1

.846

. .030

.041

.030

.842

-.034

.041

-.034

.853

*Subscripts will be referred to in a
later portion of this paper.

Figure 10
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Figure 11

Planar Plots of Variable Vector Termini with Respect
To Varimax Axes Av and Cv, Projected Onto Plane Av7v
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Figure 12

Planar Plots of Variable Vector Termini with Respect
To Varimax Axes By and Cv, Projected Onto Plane BvCv
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Equation 34 may be rewritten as Equation 36 to specifically define

the long reference structure matrix with respect to the first iterative

stage.*

F
*

1
=.FTS = FD

..

xT [36]

The first iterative stage long reference structure matrix is reported in

Table 23.

Table 23

Long Reference Structure Matrix as Determined
By First Iterative Stage - Matrix FI

Ar
1

Br
1

Cr
1

1 0.010 -0.828 -0.057
2 0.079 -0.082 -0.819
3 0.826 -0.009 -0.046
4 0.064 -0.454 -0.659
5 0.733 -0.332 -0.048
6 0.715 -0.037 -0.364
7 0.028 -0.647 -0.485
8 0.343 -0.728 -0.072
9 0.442 -0.041 -0.673

10 0.050 -0.566 -0.577
11 0.559 -0.573 -0.061
12 0.589 -0.035 -0.547
13 0.004 -0.819 -0.083
14 0.127 -0.039 -0.802
15 0.806 -0.024 -0.010
16 0.638 -0.265 -0.349
17 0.280 -0.580 -.0.443

18 0.017 -0.807 -0.025
)

19 0.038 -0.120 -0.791
20 0.819 -0.007 -0.054

Within Thurstone's algebraic framework the initial matrix of

direction cosines, Vo, is post-multiplied by the matrix So/ to form the

matrix Li. The matrix Li is the matrix of direction numbers for the long

reference vectors with respect to the fixed frame. Within the

obliquimax framework Vo is just T and So/ is S, therefore:

*It is important to note here that unlike Thurstone (1947) we do not
assume F to represent the first iterative stage of the oblique transformation

solution, nor do we assume FT to represent the first iterative stage. 56
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L1 = VoS
o1

= T(T'D-x T) = D-xT, . [37]

If x is equal to p Equation 37 would be identical to Equation 10.

Lu = D-PT [10]

The variance-covariance matrix of the first iterative stage reference

vectors, is is computed using Equation 19 and may be inferred from

Equation 5 and 37 as:

Y/ = T'D
-2x

T = S
2
= SS = (T'D

-
xT)(T'D

_
xT) = S'S.

Inasmuch as the matrix of direction numbers, S, is symmetric it is

sufficient to simply multiply it by itself and note that Y
1

= S2.

Table 24

Variance Covariance Matrix of the First Iterative
Stage Long Reference Vectors - Matrix y*

1

A' Br

A'
1

B'
1

C'
1

0.713

0.049

0.069

0.049

0.711

-0.057

0.069

-0.057

0.730

[38]

The variance-covariance matrix, (see Table 25), of the first iterative

stage long primary vectors, Z
/

, is just the inverse of y
*

/'
(see Table 24),

which is the product of the inverse of the direction numbers, s
-1

9

pre-multiplied by its transpose, (5'
1

) . Inasmuch as S is a symmetric

matrix Z
*

1
is just S

-2
.

z*

1

TID2xT s-2 s-1s-1 (7.1,D...TN(T,DxT)

The problem of coalescing of the reference vectors has been

eliminated by the definition of the obliquimax direction numbers.

Therefore, unlike Thurstone's solution it is not necessary to rescale

Y
/
to form Y

/
to check for coalescing of reference vectors. At this

point of the discussion it will be assumed that a second iteration is

[39]
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Table 25

Variance Covariance Matrix of the First Iterative
Stage Long Primary Vectors - Matrix 2",

Ar-primaru
1

BHprimary
1

Cf-rriP:ary
1

AZ- primary 1.416 -0.110 -0.140

Br-primary -0.110 1.427 0.123

C11 -primary -0.142 0.123 1.395

needed. A discussion of the evaluation of the long reference vector

structure matrix will be deferred until after the discussion of the

computation of subsequent iterative stages. (For the reader's interest

the first iterative stage unit length reference structure matrix and unit

length reference vector intercorrelation matrix are /eported in Tables 26

and 27 respectively.)

Table 26

Reference Structure Matrix as Determined
By The First Iterative Stage - Matrix F1

Al B1 C1

1 0.012 -0.982 -0.067
2 0.093 -0.097 -0.958
3 0.975 -0.011 -0.054
4 0..075 -0.538 -0.772
5 0.865 -0.394 -0.056
6 0.844 -0.044 -0,426
7 0.033 -0.768 -0.568
8 0.404 -0.864 -0.084
9 0.522 -0.048 -0.787

10 0.059 -0.671 -0.675
11 0.659 -0.680 -0.071

12 0.695 -0.041 -0.640
13 0.004 -0.972 -0.097
14 0.150 -0.046 -0.938
15 0.951 -0.029 -0.011
16 0.753 -0.315 -0.409
17 0.330 -0.688 -0.519
18 0.020 -0.957 -0.029
19 0.045 -0.142 -0.926

20 0.967 -0.009 -0.063 58
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Table 27

Intercorrelations of the Unit Length Reference Vectors
As Determined By the First Iterative Stage - Matrix Y/

Al
1

Cl

Al 1.000 0.069 0.095

B1 0.069 1.000 -0.079

Cl 0.095 -0.079 1.000

A symmetric matrix of direction numbers, S, was defined in the first

iterative stage. This matrix of direction numbers will be a constant

throughout all iterative stages. Specifically it describes the termini

of the present iterative stage long reference vectors with respect to the

previous stage long reference vectors. Here it must be emphasized that

the obliquimax matrix of direction numbers S is distinctly different from

Thurstone's matrix of direction numbers S. For the first iterative

stage these two matrices have identical roles. On subsequent iterative

stages the obliquimax matrix S defines the termini of the present iterative

stage long reference vectors with respect to the previous iterative stage

long reference vectors. On subsequent iterative stages the Thurstone

matrix Smu defines the termini of the present iterative stage long

reference vectors, u, with respect to the previous iterative stage unit

length reference vectors, m. To compute the second iterative stage long

reference structure matrix it is only necessary to post-multiply P; by S.

(See Table 28 for F
*

2'
for continuity F

2
is reported in Table 29.)

F
*

2
= FD

x-2
xT = (ED T)(T'D xT) = F

*
S [40]
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Table 28

Long Reference Structure Matrix As Determined
By Second Iterative Stage - Matrix 11

A'
2

B'
2

C'
2

1 -0.019 -0.695 -0.020
2 0.031 -0.038 -0.692
3 0.69.7 0.019 -0.005

4 0.013 -0.357 -0.544
5 0.608 -0.256 0.000
6 0.589 0.003 -0.279
7 -0.015 -0.527 -0.390

8 0.265 -0.600 -0.022
9 0.345 0.002 -0.554

10 0.001 -0.455 -0.470
11 0.453 -0.463 -0.009

12 0.475 0.007 -0.441
13 -0.025 -0.686 -0.042

14 0.073 -0.001 -0.677

15 0.680 0.004 0.026

16 0.518 -0.192 -0.262
17 0.201 -0.465 -0.347
18 -0.011 -0.678 0.007

19 -0.004 -0.073 -0.669
20 .0.690 0.020 -0.012
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Table 29

Reference Structure Matrix As Determined By
Second Iterative Stage - Matrix F

2

A
2

B
2

C9

1 -0.026 -0.972 -0.027
2 0.042 -0.054 -0.941
3 0.964 0.026 -0.007
4 0.018 -0.500 -0.740
5 0.841 -0.358 0.001
6 0.814 0.004 -0.380
7 -0.021 -0.738 -0.530
8 0.367 -0.840 -0.030
9 0.477 0.003 -0.753

10 0.002 -0.636 -0.639
11 0.626 -0.648 -0.013
12 0.657 0.010 -0.600
13 -0.034 -0.961 -0.058
14 0.101 -0.002 -0.921
15 0.941 0.006 0.035
16 0.716 -0.269 -0.357
17 0.278 -0.650 -0.471
18 -0.015 -0.948 0.010
19 -0.005 -0.102 -0.910
20 0.955 0.028 -0.016

Note that effectively (TT' = I) and that post-multiplying Fl by S

, ,

is tantamount to rescaling the rows of 0
-x
T) by the matrix D

-x
and then

post-multiplying F by (D
-2x

T). The matrix (D
-2x

T) is simply the matrix

of direction numbers defining the termini of the long reference vectors

with respect to the initial fixed axes.

The variance covariance matrix of the second iterative stage long

reference vectors is computed directly from Y
*

/
through pre- and post -

multiplicationmultiplication of Y
/

by S. (See Table 30 for
'

Y 2* . for continuity Y
2

is

reported in Table 31.)
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Table 30

Variance Covariance Matrix of the Second Iterative
Stage Long Reference Vectors - Matrix 4

Ai
2

Bi
2

C'
2

At
2

0.522 0.066 0.097

B1
2

0.066 0.511 -0.079

Ci
2

0.097 -0.079 0.541

Table 31

Intercorrelations of the Unit Length Reference Vectors
As Determined By The Second Iterative Stage - Matrix Y2

A
2

B
2

C
2

A2 1.000 0.129 0.183

B2 0.129 1.000 -0.150

C
2

0.182 -0.150 1.000

-
Y
2
= T 'D

-4xT = (TT x
T)(T'D

-2x
T) (2'ID

-
xT) = SY S

61

[41]

Equation 41 may be further simplified algebraically as:

* 4
Y
2
= S . [42]

Following logically from Equation 42 is the computational equation for the

variance covariance matrix of the second iterative stage long primary

vectors. (See Table 32.)

Z
2

= S
-4

[43]

From the discussion of the first two iterative stages of the

simplified obliquimax it may be inferred that through an application of

the laws of exponents any iterative stage can be developed directly from

the first iterative stage without computing intermediate iterative stages.
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Table 32

Variance Covariance Matrix of the Second Iterative
Stage Long Primary Vectors - Matrix Z

2

.g-primary
a

B!-primary
4

C;-prim2ry

A2 -primary 2.031 -0.327 -0.411

Bi2 -primary -0.327 2 057 0.359

CZ- primary -0.411 .0.359 1.975

Assume that one

associated with

62

wishes to determine the long reference structure matrix

the n -th iterative stage.

Fu F FT(TtD-xT)1 (riDxT)2 (1"D -xT)3...(T1D -xT)7,1

F* = FT(TtD- '1)
U

= FTSu

Fu = FT(TiD
uxT)

= FTS
u

* -ux
F
u
= FD T = FTSu [44]

Because the matrix of direction numbers, S, is symmetric and because

it is a constant at all iterative stages the matrix (FT) need only be

post-multiplied by (Su) to determine the u-th iterative stage long

reference vectors. For the m-th iterative stage the matrix F* is
(m-1)

simply post-multiplied by S to determine F.

The variance covariance matrix of the u-th iterative stage long

reference vectors may be determined in a similar fashion. Assuming that

the variance covariance matrix is computed by a pre- and post-multiplication

of the previous iterative stage variance covariance matrix by S:

Yu

Y

Y
u

= (TtD-xT)u

= (T xT )u

D-x )2u

(rtp-2uxT)

..(T'D-xT)
2

(T'D-xT)
1

(T'D-xT)
1

(I"DxT)
2
...(T'D-xT)

(rtDxT)u;

=S
2u

;

= S
2u

.

63
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Thus, the variance covariance matrix of the u-th iterative stage long

reference vectors is just the matrix of direction numbers raised to the

2u-th exponential power. Following from Equations 42, 43 and 45 the

variance covariance matrix of the u-th iterative stage long primary

vectors is:

Z
*
= (TID

2ux
T) = S

u
. [46]

Using Equations 24 and 27 the diagonal rescaling matrices D u2
1

and

D
2

may be determined from Y
u

and Z
u

respectively. The columns of matrix
u2

Fu as defined by Equation 44 may be rescaled by D u1 to form the reference

structure matrix, Fu, or they may be resealed by D
u2

to form the primary

pattern matrix, Wu.

Table 33

Diagonal Rescalting Matrix Necessau to
Rescale F

2
to F

2
- Matrix D-J'

21

A
2

B
2

C
2

1.383 .000 .000

.000 1.399 .000

.000 .000 1.360

Table 34

Diagonal Rescq.ling Matrix.Necessary
To Rescale F

2
to W

2
- Matrix D

22

A2- primary B2- primary C2- primary

1.43 0.00 0.00

0.00 1.44 0.00

0.00 0.00 1.41
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The matrices D and D
-1

are reported in Tables 33 and 34
21

1

22

respectively. The two column rescalings of F*2 to form F2 and TV
9
are

reported in Tables 29 and 35 respectively. The matrices Y
*

2 2
and Z

*
have

been rescaled by D and D
-1

respectively to form Y and Z which are
2/

1

22 2 0

reported in Tables 31 and 36 respectively.

Table 35

Primary Pattern Matrix As Determined By
Second Iterative Stage - Matrix W2

2
-primary B

2
-primary C

2
-primary

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

-0.027 -1.001 -0.028
0.044 -0.055 -0.976
0.999 0.027 -0.007
0.019 -0.514 -0.767
0.869 -0.369 0.000
0.842 0.004 -0.393

-0.021 -0.756 -0.550
0.379 -0.864 -0.031
0.493 0.003 -0.781
0.001 -0.655 -0.662
0.648 -0.667 -0.013
0.679 0.010 -0.622

-0.036 -0.988 -0.059
0.104 0.001 -0.955
0.972 0.006 0.037
0.741 -0.276 -0.369
0.287 -0.670 -0.489

-0.016 -0.976 -0.010
-0.006 -0.105 -0.943
0.987 0.029 -0.017

Table 36

Intercorrelations of Unit Length Primary Vectors
As Determined By The Second Iterative Stage - Matrix 2

2

A2-primary B2-primary C2-primary

A2- primary 1.000 -0.159 -0.206

B2- primary -0.159 1.000 0.177

C
2
-primary -0.206 0.177 1.000
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Comparing Tables 29 and 31 with Tables 13 and 14 of Thurstone's

solution it is evident that the second iterative stage solution as

determined by the simplified obliquimax closely corresponds to the final

oblique solution as determined by Thurstone. For this illustrative

example a reasonable estimate of p was (ux = .40). For any oblique

solution the final estimate of p as determined by the u-th iterative

stage will be ux.

In the simplified obliquimax the symmetric matrix of direction

numbers, S, is used in an algebraically similar manner as Thurstone's

matrix H
mu

(Equations 6-8). Thurstone post-multiplied the m-th reference

structure matrix. by. H to obtain the u-th reference structure matrix.

In the simplified obliquimax the (u-1)-th long reference structure matrix,

(u - 1 = m), was post-multiplied by the symmetric matrix S to obtain the

u-th long reference structure matrix. At each iterative stage Thurstone

had to compute Hmu. In the simplified obliquimax the matrix S is a

constant matrix that is computed prior to the iterative stages. If

Thurstone had defined S as a constant symmetric matrix and used it in

place of Hmu his solution would be algebraically identical to the

simplified obliquimax.

Additional Geometric Aspects of the Simplified Obliquimax Matrices S and
(9P.T)

Noting that the matrix S remains constant across iterative stages it

may be correctly inferred that the i-th long reference vector of the u-th

iterative stage has angles of inclination with the r long reference

vectors of the (u-1)-th iterative stage that are identical to the angles

of inclination that the i-th long reference vector of the (u -1) -th

iterative stage has with the r long reference vectors of the (u -2) -th

iterative stage. If in Figures 10, 11 and 12 the variable points were
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eliminated and the scalings of the axes were eliminated the remaining

vectors would be representative of the plot of the new long reference

vectors of the previous stage (see Figures 13, 14 and 15). It is

prudent to keep in mind that even though the reference vectors are

oblique, the plots are on orthogonal coordinate cross-section paper.

As in Thurstone's approach (see Subsequent Iterative Stages) it is only

for conceptual purposes that thi& plotting approach is used.

Figure 13

Long Reference Vectors A4 and BL Plotted With
Respect to Long Reference Vectors AL../ and BL.../,

Projected Onto The AL../BL.../ Plane

Long Reference Vector

Reflected tong Fieforonco Vector

67
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Figure 14

Long Reference Vectors A' and C?; Plotted With
Respect to Long Reference Vectors A:1_1 and CI,_/,

Projected Onto The Aul C' Plane
-/ u-/

-- Long Reference Vector

..-- .., Reflected Long Reference Vector

68
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Figure 15

Long Reference Vectors N and Plotted With

Respect to Long Reference Vectors BL....7 and C4_1,

Projected Onto The B7:1_,ICLI Plane
(4.

cu4

69
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In Figures 16, 17 and 18 the termini of the variable vectors are

plotted with respect to the planes defined by the initial fixed axes.

The unit reference vectors as determined through five successive iterative

stages (x = .20) have also been plotted and labeled in these Figures. From

these figures, several important geometric properties of the obliquimax may

be inferred with respect to the matrices D-x, DP and T.

The angle of inclination between the long reference vectors and the

previous iterative stage reference vectors remains constant throughout the

iterative stages. Although it is not clearly apparent in Figures 16, 17

and 18 there is a very systematic divergence of the reference vectors from

the varimax axes toward the initial fixed axes from one iterative stage to

the next iterative stage. If'Figures 16, 17 and 18 were combined and

plotted in a 3-dimensional space it would be clearly seen that the termini

of the reference vectors follow distinct, predictable "paths" in space

from one iterative stage to the next. Each reference vector will appear

to converge toward the initial fixed axis associated with the smallest

value in the matrix D
2

. Within the framework of planar plots it may be

observed that both reference vectors will tend to diverge from each other

but in so doing they will converge toward that fixed axis, of the two

defining the plane, that is associated with the smaller value in the

matrix D2.

Within the framework of the general obliquimax and, hence, the

simplified obliquimax there are well defined paths in n-dimensional space

that the termini of the reference vectors will follow through successive

iterations. These paths are determined a priori by the orthonormal

matrix T. An orthonormal matrix computed from F by the quartimax or

equamax (assume r > 2) criteria will not define paths that are the same

70



Figure 16

Five Successive Approximations to Long
Reference Vectors Al and B' Projected Onto The AnB0
Plane Defined By The Original Fixed Axes Ao and Po
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Figure 17

Five Successive Approximations to Long
Reference Vectors At and CI Projected Onto The AoCo
Plane Defined By The Original Fixed Axes Ao and Co
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Figure 18

Five Successive Approximations to Long
Reference Vectors B' and C' Projected Onto The BoCo
Plane Defined By The Original Fixed Axes Bo and Co
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as the paths defined by the varimax criterion. Aside from the somewhat

weak algebraic rationale for the varimax transformation matrix, two years

of empirical investigation has firmly established the superiority of the

varimax T in the general obliquimax transformation (The varimax T has

never failed to give good results for a properly factored set of data.).

Although these paths are not fully understood it is known that they meet

at the origin. At the origin all of the reference vectors will coalesce

into a point. As the termini of the reference vectors traverse these paths

toward the origin the reference vectors become progressively more correlated.

These paths may be discussed superficially as a group using the simple

analogue of (rate x time = distance). The rate at which the reference

vector termini traverse their paths as a group may be thought of as x. A

unit of time may be thought of as an iterative stage. The total distance

traversed is then a function of the value of x in the simplified obliquimax

equations and the number of iterative stages.

It may be assumed that at some relative distance p along these paths

there are r points defining the termini of r reference vectors such that

the number of vanishing perpendicular projections of the variable vectors

onto these r reference vectors is a maximum.

Assume that (p = .40), as it does in the illustrative problem. A

choice of Or = .01) would denote a relatively slow rate requiring more

time to arrive at distance (p = .40) than a rate of (x = .20). When

Cr = .01) the time required to arrive at p would be (u = 40) the number

of iterative stages. When (x = .20) the time required to arrive at p

would be (u = 2) the number of iterative stages.

Note that in Figures 16, 17 and 18 the reference vectors passed

through p and that the number of vanishing projections onto the reference



74

vectors determined by the fifth iterative stage is less than the number

of vanishing projections onto the reference vectors determined by the

second iterative stage. The reference vectors associated with (x = .25)

may be inferred from Figures 16, 17 and 18. For (x = .25) the reference

vectors will always, for any particular iterative stage, diverge farther

than those reference vectors associated with (x = .20). The first

iterative stage for (x = .25) would be a better approximation to (p = .40)

than (x = .20), but on the second iterative stage those reference vectors

associated with (x = .20) would be the reference vectors associated with

= .40) while the second iterative stage reference vectors associated

with (x = .25) would have diverged beyond the ideal reference vectors

associated with (p = .40). Thus, it is most prudent that the estimate of

x be small. (A reasonable estimate for most sets of data would be .10.)

The larger the estimate the more probable is the possibility of jumping

past p in asingle iterative stage. A value of (x = .20) was chosen for

the illustrative example as the ideal value of p was known to be

approximately (.40) and a value of Or = .20) would only necessitate two

iterative stages.

When to Stop Iterating

Having discussed the simplified obliquimax computationally and

geometrically it is now necessary to briefly discuss the concept of

vanishing projections within the obliquimax framework. Ideally one would

like some analytic criterion to assess an oblique solution, however the

discussion of such a criterion will not be presented in this paper. (Two

analytic criterion have been established for use with the general

obliquimax and an additional four are being investigated.)

Traditionally a subjective evaluation of the unit reference structure

matrix loadings is used to judge the suitability of an oblique solution.
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If the small entries of the u-th iterative stage reference structure

matrix are larger than their corresponding values in the (u-/)-th

iterative stage reference structure matrix it may be assumed that for

the set of possible solutions that might be defined using a specific

value of x the (u-1)-th solution is the best in terms of the number of

vanishing projections onto the unit length reference vectors.

Table 37

Long Reference Structure Matrix As Determined
By Third Iterative Stage - Matrix F*

3

A3
3 3

C31

1 -0.038 -0.585 0.006
2 -0.004 -0.008 -0.588
3 0.589 0.037 0.024
4 -0.022 -0.281 -0.451
5 0.506 -0.197 0.034
6 0.486 0.030 -0.214
7 -0.045 -0.431 -0.315
8 0.205 -0.497 0.013
9 0.269 0.031 -0.458

10 -0.032 -0.367 -0.385
11 0.369 -0.376 0.027

12 0.383 0.035 -0.357
13 -0.043 -0.577 -0.014
14 0.034 0.024 -0.574
15 0.577 0.023 0.050
16 0.421 -0.137 -0.196
17 0.142 -0.373 -.0.271

18 -0.029 -0.571 0.029
19 -0.033 -0.038 -0.568
20 0.584 0.038 0.018

Within the framework of the simplified obliquimax the long reference

structure matrix may be evaluated in place of the unit length reference

structure matrix. The number of vanishing projections onto the long

reference vectors will also be a maximum for the iterative stage

associated with the best estimate of p. In Tables 23, 28 and 37 the

first three iterative stage long reference vector structure matrices are

.6



76

reported. In comparing Tables 23 and 28 the low loadings associated with

Table 28 are smaller in magnitude than their corresponding loadings in

Table 23. In comparing Tables 28 and 37 it may be observed that the low

loadings in column three of Table 37 are smaller in magnitude than their

corresponding loadings in column three of Table 28, however the low

loadings in column one of Table 37 are larger in magnitude than their

corresponding loadings in column one of Table 28. This phenomena of

reduction and inflation of loadings in Table 37 may be thought of as

"dumping" and actually represents the first stages of the coalescing of

factors one and three. Inasmuch as all small loadings did not decrease

in the third iterative stage long reference structure matrix it may be

assumed that the long reference structure matrix determined by the second

iterative stage is the best long reference structure matrix of the set of

possible long reference structure matrices that might be determinsd for

Cr = .20). That is to say, the third and all subsequent iterative

stages for (x = .20) will locate the termini of the reference vectors

beyond the ideal points defined by p. (See Figures 16, 17 and 18.)

Summary of Section III

In this section the simplified obliquimax was developed and explained

through the use of an illustrative example. A symmetric matrix of

direction numbers, S, was used in the computation of the solution matrices

at each iterative stage. The simplified obliquimax retained the metric of

the original factor solution throughout all iterative stages and it was

not until the final iterative stage solution had been obtained that the

metric was converted to that of unit length reference vectors, thereby

providing a traditional oblique solution.

77



77

The essence of the simplified obliquimax is the use of the symmetric

matrix S and the retention of the metric of the original factor solution.

The equations presented in this section are summarized below for the

computation of the u-th iterative stage.

1. Define D2 as:

D2 = diagonal [F'F]. [9]

2. Determine the orthonormal T from F using Kaiser's (1958) normal
varimax procedure.

3. Select some small value for x, say:

x= .10.

4. Define S as:

S = TID-D3T. [35]

5. The long reference structure matrix for the u-th iterative stage
is defined as:

Fu = FT(T'D x21)1 (T'D xT) .(T'D xT)
u*

Therefore:

F = FTS
u

6. The variance covariance matrix for the u-th iterative stage
reference vectors is defined as:

[42]

Yu (T'D xT)74...(T'D T) CT'D T) xT) (T'D xT) xT)u
-x -x

1 1 2

Y = S
2u

[43]

7. The variance covariance matrix for the u-th iterative stage
primary vectors is defined as:

* x x x
T) (T'D

x
T) ... (7 q)xT ) ;zu, = wL,

X
. ...(T'D T) (T'D T) CT'DT)u

2 1 1 2 u
* -2u

Zu = AS [44]

To convert to a traditional oblique solution it is only necessary to

rescale Fu, 4 and 4 to the metric of unit vectors.

8. To determine the unit reference structure matrix define:

D21 = diagonal
2u

] =diagonal.[Y0];
74

=
-1

uu D
ui-
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9. To determine the unit primary pattern matrix define:

D
u2

= diagonal [s ] = diagonal [e];

* +1
F
u
D
u2'

- -1
10. Using D

1 Du2, Y* and Zu the reference vector and primary

vector intercorrelation matrices may be computed as:

Y = D
-1
S
2u
D
-1

= D
-1
Y
*
D
-1

u ul u1 u1 u ul'

Z = D
-1
S
-2u

D
-1

= D
-1

Z
*
D
-1

u u2 u2 u2 u u2
.

All solution matrices within the framework utilize the symmetric

matrix S. The definition of S eliminates the possibility of transforming

to singularity and the necessity of planar plots.

Summary

This paper was arranged into three sections; the first section being

primarily background; the second section being primarily theoretical; the

third section being application and theory.

In the first section one of Thurstone's methods of determining

oblique transformations was discussed within the context of his classical

box problem. This section was present.ed to provide a background and to

establish the terminology and methodology used in the subsequent sections.

In the second section of this paper certain theoretical aspects of

the general obliquimax were discussed to provide a basis for the

development and understanding of the simplified obliquimax. In this

section a cursory discussion of the general obliquimax was provided.

Total variance was defined with respect to the perpendicular projections

of n variable vectors onto r long reference vectors and with respect to

the perpendicular projections of r long primary vectors onto each other.

The equations of the general obliquimax were discussed within the

framework of variance and variance modification. This discussion

necessitated an algebraic comparison of the Thurstone type reference
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structure matrix and the Holzimger type primary pattern matrix. Finally

it was demonstrated algebraically that when the metric of the original

factor solution is retained in place of unit vectors the Holzinger

pattern matrix and the Thurstone structure matrix are identical.

In the third and final section of this paper the semi-subjective

simplified obliquimax transformation was developed and discussed within

the context of Thurstone's box problem. A constant, symmetric matrix of

direction numbers was discussed algebraically and geometrically. The

general obliquimax equations were modified and re-defined within the

metric of the original factor solution using exponential powers of the

symmetric matrix of direction numbers and an orthogonally transformed

version of the initial factor loading matrix. Finally the subjective

evaluation of the "simple structure" of a solution was discussed with

respect to the un-rescaled reference structure matrix. The discussion

was presented within the context of the box problem and in numerous parts

of the section comparisons and contrasts were made with the Thurstonian

model for determining oblique transformation solutions.

Conclusion

The primary objectives of this paper were pedagogical. One objective

was to provide a reliable, semi-subjective transformation procedure that

might be used without difficulty by beginning students in factor analysis.

A second objective was to clarify and extend the existing knowledge of

oblique transformations in general. A third objective was to provide a

brief but meaningful explication of the general obliquimax. Implicit in

these first three objectives was the fourth objective which was one of

presenting a paper that might be profitable for both the beginning student

and the factor analytic theoretician.
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To these ends the simplified obliquimax was developed having as its

basis the classic Harris and Kaiser (1964) theory of developing oblique

transformation solutions through the use of orthogonal transformation

matrices. Inasmuch as the Harris and Kaiser theory does encompass the

Thurstonian approach the Thurstonian method of determining oblique

transformations was used to provida background information and to explain

by analogy certain aspects .of the simplified.obliquima.c.*

It may be concluded that the simplified obliquimax has fulfilled the

first three objectives of this paper. This paper has provided:

1. a reliable, semi-subjective transformation procedure for
beginning students in factor analysis;

2. a clarification and extension of the existing knowledge of
oblique transformations;

3. a brief explication of the general obliquimax.

*I would like to acknowledge the assistance that I received in this
paper from J. Whitey. His discussions with me on the geometric aspects
of oblique solutions proved quite valuable in the overall development of
the total paper.
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